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Abstract
Old-growth forests (OGF) provide valuable ecosystem services such as habitat provision, carbon sequestration or recreation 
maintaining biodiversity, carbon storage, or human well-being. Long-term human pressure caused OGFs in Europe to be rare 
and scattered. Their detailed extent and current status are largely unknown. This review aims to identify potential methods to map 
temperate old-growth forests (tOGF) by remote sensing (RS) technology, highlights the potentials and benefits, and identifies 
main knowledge gaps requesting further research. RS offers a wide range of data and methods to map forests and their properties, 
applicable from local to continental scale. We structured existing mapping approaches in three main groups. First, parameter-based 
approaches, which are based on forest parameters and usually applied on local to regional scale using detailed data, often from 
airborne laser scanning (ALS). Second, direct approaches, usually employing machine learning algorithms to generate information 
from RS data, with high potential for large-area mapping but so far lacking operational applications and related sound accuracy 
assessment. Finally, indirect approaches integrating various existing data sets to predict OGF existence. These approaches have 
also been used for large area mapping with a main drawback of missing physical evidence of the identified areas to really hold 
OGFs as compared to the likelihood of OGF existence. In conclusion, studies dealing with the mapping of OGF using remote 
sensing are quite limited, but there is a huge amount of knowledge from other forestry-related applications that is yet to be lever-
aged for OGF identification. We discuss two scenarios, where different data and approaches are suitable, recognizing that one 
single system cannot serve all potential needs. These may be hot spot identification, detailed area delineation, or status assessment. 
Further, we pledge for a combined method to overcome the identified limitations of the individual approaches.

Keywords  Forest conservation · Old-growth forest · Remote sensing · Mapping

1  Introduction

For a very long time, human activities have had a vast impact 
on the European forest landscape. Since the mid-Holocene, 
forests have been cleared for agriculture, grazed by domestic 

cattle, and intensively managed and altered for wood pro-
duction [1, 2]. As a result, forests with little or no traces of 
human intervention—often referred to as “primary forests”—
have become extremely rare. According to some studies [3, 
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4], the extent of primary forests in Europe covers approxi-
mately 1.4 million ha, or 0.13% of the total forest area.

The Food and Agriculture Organization has developed a 
global definition of the term “primary forest” published in 
2020: “Primary forests are naturally regenerated forests of 
native tree species, where there are no clearly visible indica-
tions of human activities and ecological processes are not 
significantly disturbed” [5]. However, due to the scarcity 
of primary forests in Europe, a wider concept is needed to 
identify forests with a high degree of naturalness and con-
servation value. In this context, the concept of old-growth 
forests is gaining attention, also of policy makers [6].

This concept of old-growth forests (OGF) has been 
developed for the Pacific Northwest of the USA by 
Franklin [7] and Spies [8]. It has been implemented in 
the rest of North America in the 1990s [9, 10], and, since 
the early 2000s, it has started to appear also more and 
more in Europe [11–22]. A wide range of definitions and 
descriptions exist, but the common denominator is that it 
refers to forest ecosystems containing advanced structural 
stages of natural forest development such as the presence 
of more large old trees, higher structural complexity, and 
larger amounts of deadwood in advanced decay stage in 
comparison to communities of the same forest type.

According to the Convention on Biological Diversity 
(CBD), “Old growth forest stands are stands in primary or 
secondary forests that have developed the structures and spe-
cies normally associated with old primary forest of that type 
have sufficiently accumulated to act as a forest ecosystem dis-
tinct from any younger age class” [23]. Old growth is thus not 
necessarily “virgin” or “primeval,” but can also re-develop 
following human disturbances [10]. These may have devel-
oped through deliberate or unintentional non-intervention 
over shorter or longer time. When applying the above defini-
tion of OGF, the total area may reach around 3% of the total 
forest area in Europe [24]. A definition and description for 
old-growth forests is currently under development for Europe, 
describing them as formerly managed forests that have rede-
veloped structural features that are typically associated with 
primary forests after a period of non-intervention.

Though rather small in extent and highly fragmented, pri-
mary and OGF habitats in Europe are essential for ecosystem 
conservation and they are highly valuable for Europe’s bio-
diversity [1, 4, 25]. Moreover, the forests internal microcli-
mate characterized by a cooling effect and the forests poten-
tial to capture significant amounts of carbon dioxide make a 
valuable contribution to climate regulation [26–29] and may 
provide better ecosystem services than managed forests [30]. 
Although their values have been known for a long time and 
many areas have been largely protected, other areas were and 
are still under threat in different countries [31, 32]. Within 
the frame of the Biodiversity strategy to 2030, the Euro-
pean Union (EU) demands to put all remaining primary and 

old-growth forest of Europe under strict protection [6]. In 
order to enforce protective measures, the extent of primary 
and old-growth forests needs to be known and the status 
of the forests must be monitored to detect deterioration or 
monitor restoration progresses. This is also the aim of the 
EU-funded LIFE project PROGNOSES, which has a focus 
on ancient and primeval beech forests of the Carpathians and 
other regions of Europe. This study is a part of the project’s 
efforts to improve mapping and monitoring of such temper-
ate OGFs in Europe.

Old-growth forests are not defined or identified by a sin-
gle attribute [33], but a combination of several factors may 
serve as important indicators. This is even more critical, if 
forests from different ecosystems are considered (Mediter-
ranean, temperate, boreal). To cope with the complexity, we 
focus our review on temperate OGFs (tOGFs) in Europe, 
nonetheless integrating studies from other areas, as long 
as they refer to characteristics that are relevant to or easily 
transferable to temperate European forests. In Sect. 4, we 
discuss some aspects on transferability, links, and limitations 
with regard to other OGFs. There is a wide variability and 
combination of features exhibited in OGFs, and the features 
do not simply “add-up” as the sum of a series of rigid cri-
teria [34]. The extreme complexity of ecological processes 
that shapes natural forests’ dynamics [35], especially late-
successional ones, demonstrated to converge to stand struc-
tural complexity [12], and more variably to biomass-related 
attributes. OGFs may therefore be described or delineated 
based on a set of multiple criteria that may or may not be 
simultaneously present. Furthermore, instead of applying 
strict dichotomous decisions on determining old growth, 
there is also a strong tendency to apply a gradual scale 
(index of “old-growthness” or OGI) to indicate the extent 
to which a forest meets specific criteria or approximates cer-
tain reference values [36–38]. Although there is no common 
definition of OGF, a review of literature on OGF criteria 
and indicators revealed strong commonalities between the 
studies. Table 1 summarizes the most commonly used OGF 
criteria, the related references, and also highlights, which 
remote sensing (RS) derived forest parameter(s) could be 
used to generate the respective OGF criterion. Although not 
all of the references cited in the table strictly relate to OGF, 
but could be used for OGF mapping due to similar or even 
the same criteria.

A review on OGF definitions [39] identifies three broad 
groups of criteria: (i) structural and compositional features, 
(ii) successional processes, and (ii) biogeochemical pro-
cesses. Structural and compositional features comprise the 
existence of large old trees, numerous large logs and snags, 
diverse tree community, multi-layered canopy, structural 
complexity, and/or canopy gaps. Successional processes 
are related to external disturbances, either man-made (har-
vesting) or nature-made (wind-throw, forest fires, or climate 
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change). Biogeochemical processes include decay stages, 
closed nutrient cycles, and increased understory vegetation. 
The authors of [40] defined six criteria to differentiate old-
growth forests from other forests: (i) existence of large trees 
per species and site; (ii) wide variation in tree sizes and tree 
spacing; (iii) accumulations of large-size (in relation to the 
living trees) dead standing and fallen trees; (iv) decadence 
in the form of broken or deformed tops or bole and root 
decay; (v) multiple canopy layers; and (vi) canopy gaps and 
understory patchiness.

In their publication, the authors [41] identified (i) the 
absence of signs of human activity like artificial structures, 
stumps, cattle grazing alongside with (ii) a natural forest 
composition, (iii) presence of veteran trees, and (iv) stand-
ing and lying dead wood as the main criteria to differentiate 
primary forest from other forests. Again, there is the differ-
ence between primary forests and OGF, but a significant 
overlap in criteria used to distinguish either of them from 
other (NOGF, non-primary) forests. In a global meta-study 
[12], the most important criteria to differentiate old-growth 
forests from other forests were identified separately for all 
continents. For Europe, (i) age of the trees, (ii) presence of 
large and very large trees, and (iii) the amount of coarse 
woody debris (CWD) were identified as the most decisive 
parameters. Other authors [42] also found the most signifi-
cant differences between managed and old-growth forests 
in (i) the presence of large trees (mean diameter), (ii) pres-
ence of CWD, and (iii) volume of living trees (similar to 
biomass). The authors of [37] defined (i) the successional 
status, (ii) development stage, (iii) tree species diversity, (iv) 
proportion of native species, (v) variability of tree dimen-
sions and density, (vi) density of regeneration layer, (vii) 
amount of dead wood, (viii) decay stage, and (ix) the exist-
ence of microhabitats as important criteria in the definition 
of OGF. Several studies reported on the strict dependence 
of living and dead biomass attributes on site conditions, and 
established minimum or range values for biomass attributes 
within the same bioclimatic zone, and found that maximum 
tree age and stand structural complexity converged to natu-
ralness-related ecological processes [12, 16]. A summary of 
the identified OGF criteria is given in Table 1.

For proper mapping and monitoring of forests, traditional 
terrestrial assessments have been performed using sam-
ple plots. Such plots are usually a circle or a square with 
0.03–0.15 ha of size. Manual in situ methods are used to map 
and monitor forest properties at these plots, which is often 
difficult and time consuming [43]. In addition, a compari-
son of existing in situ survey methods for forest biodiversity 
assessment highlighted that no common methodology is used 
in Europe [44]. This applies even more to old-growth forests 
due to often remote and not easily accessible locations of 
these forests, which is in many cases the reason for their very 
existence. Alternative approaches using remote sensing (RS) 

and geo-information technology may help in this endeavor 
[45]. Already in 2012, a study [46] stated that Earth Obser-
vation (EO) has a role to play in monitoring biodiversity in 
general. Further, another source [24] stated that “while the 
identification of undocumented primary and old-growth for-
ests in the field remains crucial, inventorying and monitor-
ing applications might benefit from using state-of-art remote 
sensing technology.” However, already in 1998, Norheim 
[47] found strong differences in OGF extent depending on 
RS data and methods used. Most authors [3, 48, 49] agree 
that remote sensing–based classification or indirect habitat 
modeling with geo-information technology is means to iden-
tify “potential” old-growth forests, which can consecutively 
be evaluated in more detail by targeted field surveys.

The initial premise for this review was the structuring of 
OGF mapping approaches from a RS point of view in three 
groups: the parameter-based approaches, the indirect 
approaches, and the direct approaches. They are schemati-
cally outlined in Fig. 1. First, parameter-based approaches 
are based on (several) individual forest parameters as listed 
in Table 1. Studies either use individual forest parameters 
derived from RS data within the study itself or from exist-
ing forest-related data (such as national forest inventories or 
biomass assessments). Second, indirect approaches employ 
existing thematic geospatial data as proxies to model the 
potential existence or absence of OGF. Such proxy data are 
for example: roads, settlements, specific land use categories, 
socio-economic indicators such as population density, and cli-
mate data. They sometimes also use occurrence or absence of 
specific indicator biota like insects or fungi. Third, the direct 
approaches use RS data to directly classify OGF without any 
intermediate step. This third group has gained increased inter-
est with the development of more efficient machine learning 
methods in recent years. In addition to these three groups, also 
several combinations of the three approaches are possible. In 
the following subchapters, we review the data and methods 
used for each of the three approaches.

Based on this premise, the aim of this study was to ana-
lyze and review each approach regarding previously used 
RS data and methods. This is to provide a comprehensive 
picture on common agreements, the status of research (i.e., 
what is already well known), and the main knowledge gaps 
in the identification and mapping of OGF. Further, we high-
light the main conceptual differences between the three 
approaches. Finally, we give an outlook to the next steps 
and future trends in OGF mapping and monitoring.

2 � Methodology

The review methodology used in this study is twofold: first 
(Sect. 2.1), existing publications are reviewed to compile 
the state-of-the-art for the three approaches. The search was 
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following the PRISMA approach [50] performed in two stages: 
first, we searched in journals with “remote sensing” in the title 
for all publications including the term “old-growth forest” (and 
similar terms, see Fig. 2) in the Elsevier SCOPUS database. 
This search was followed by a screening and eligibility check 
eliminating records with a focus on non-temporal OGFs and 
studies merely taking place on an OGF site but not targeting 
the differentiation of OGF/NOGF. In addition to this structured 
search, we also included studies based on the knowledge of the 
authors and their networks. Due to the common project (LIFE 
project PROGNOSES) dealing with the mapping of old-growth 
beech forests in Europe, there is a clear focus/bias in this part 
of the literature selection. Finally, in a qualitative survey, we 
first sorted the resulting OGF records into the three approaches. 
Second, we grouped the parameter-based approaches according 
to RS input data type. For each of the approaches, examples are 
shown in the respective results sections.

The second part of the review (Sect. 2.2) is a quantitative 
assessment of classification methods used within all three 
approaches. These classification methods are of cross-cutting 
nature, as a specific classification method, e.g., Random For-
est, can be used either to classify a specific parameter within 
the parameter-based approach or to classify OGF directly. For 
this assessment, a separate literature search was performed, as 
this part of the search is not restricted to the classification of 
OGF. More details on that methodology are given in Sect. 2.2.

2.1 � Review of Mapping Approaches

Concerning the parameter-based approach, the first step was 
to relate the OGF criteria identified in the introduction to 
forest parameters that can be generated from RS data, see 
Table 1 for the result. Next, an extensive search was con-
ducted for publications targeting these forest parameters. It 

Fig. 1   Schematic illustration of 
the three main approaches to 
map OGF based on remote sens-
ing and other geospatial data

Fig. 2   Literature review for 
mapping approaches (2.1) fol-
lowing the PRISMA guidelines
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has to be mentioned that many of these forest parameters are 
used for other applications than OGF classification; thus, 
the publications reviewed do not necessarily have a focus 
on tOGF. This is also represented in the number of studies 
given in Fig. 2: 171 parameter-based records without tOGF 
focus compared to 31 parameter-based records with tOGF 
focus. The second step sorted identified publications per for-
est parameter by input RS data type to get an overview on 
which parameters can be gathered from which data sources. 
The data types reviewed in this publication are: Airborne 
Laser Scanning (ALS), optical very high-resolution (VHR) 
data, optical high-resolution (HR) data, and Synthetic Aper-
ture Radar (SAR) data. Each type is briefly explained below.

ALS is an active remote sensing technology able to pro-
vide 3D characteristics because it penetrates the forest can-
opy and, therefore, delivers information on forest vertical 
structure, with point densities typically between 1 and 100 
points/m2. Accordingly, the level of accuracy and the capa-
bility to map a certain forest parameter vary with the point 
density. The emitted laser pulses can either be recorded as 
discrete returns (single or multiple return system) or as one 
continuous return (full-waveform system) [51]. Generally, 
wall-to-wall mapping is possible, but usually rather costly 
in terms of acquisition as well as processing time and com-
putational capacity.

For this study, all optical imagery with a pixel size smaller 
or equal to 5 m is considered to be VHR data. Usually, these 
are orthophotos from aerial surveys or from VHR satellite 
data (e.g., Pleiades, World View) and contain four bands (vis-
ible and near infrared). Wall-to-wall assessment is possible 
and the acquisition costs depend on the sensor used. Several 
VHR sensors also allow stereo-processing, which can be used 
to deduce 3D information of the canopy [52–55]. However, 
in contrast to ALS, there is no penetration of the crown and 
thus no information below the upper canopy.

Optical HR data has a spatial resolution between 5 and 
30 m. The most frequently used imagery is from the Euro-
pean Space Agency’s Sentinel-2 and NASA’s Landsat mis-
sion since they are available free of charge. They have mul-
tispectral bands ranging from visible and near to shortwave 
infrared, allow for wall-to-wall assessment, and have a high 
repeat rate (frequent images) which enables to incorporate 
temporal characteristics of spectral reflection in the analysis. 
The high repeat rates result in dense image time series which 
enable time series analyses that also take into account the 
change in spectral reflectance. Moreover, the Landsat mis-
sion has been providing continuous Earth observation data 
since 1972 which allows historical analysis for the last five 
decades [56].

Finally, SAR is an active sensing system of different 
wavelengths (X, L, C, S, P with X being the shortest and 
P being the longest wavelength). Longer wavelengths can 

penetrate the vegetation and give information on the forest 
structure and biomass. Wall-to-wall assessment is possible 
and repeat rate is similar to HR data. The costs depend on 
band and sensor; there are no acquisition costs for C band 
Sentinel-1 data.

Aside from the parameter-based approach, we also used 
all available sources to generate a comprehensive review of 
existing studies for direct and indirect approaches to map 
OGF in temperate forests of Europe. In full awareness that 
this review does not cover all studies ever done in this field, 
we are however confident to show the broad picture.

2.2 � Quantitative Assessment of Classification 
Methods

For the second part of the review, we searched the SCOPUS 
database in Journals with “remote sensing” in the journal 
title and “forest” or “tree” in the title, abstract, or keywords 
(search string: SRCTITLE ( “remote sensing”) AND TITLE-
ABS-KEY ( “forest” OR “tree”)). This led to 1242 publica-
tions. Instead of dealing with each publication individually, 
we categorized the methods into algorithm groups. The fol-
lowing eleven algorithms/algorithm groups were identified:

	 1.	 Thresholding, local maximum or local minimum 
approaches

	 2.	 Regions growing and watershed approaches
	 3.	 Spectral mixture analysis
	 4.	 Template matching
	 5.	 (Multiple) linear and non-linear regression
	 6.	 Bayesian approaches
	 7.	 Support Vector Machine (SVM)
	 8.	 Clustering algorithms
	 9.	 Dimensionality reduction algorithms
	10.	 Random forest (RF) and ensemble learning approaches
	11.	 Artificial neural (ANN) network and deep learning 

(DL) approaches

Exemplarily, the search string for the first category would 
be: SRCTITLE ( “remote sensing”) AND TITLE-ABS-KEY 
( (“forest” OR “tree”) AND (“thresholding” OR “local maxi-
mum” OR “local minimum”)). In order to see the temporal 
development of the different algorithms, we sorted the pub-
lications by publication date into 5-year intervals starting 
from 1997 until the end of 2021.

3 � Results

The results of the first review are given in Sects. 3.1, 3.2, 
and 3.3 per approach. Section 3.4 summarizes the results of 
the methods review.
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3.1 � Parameter‑Based Approach

For the parameter-based approach, the first step is to link 
OGF criteria to remote sensing–based parameters. Table 1 
reviews the literature regarding this connection. Each poten-
tial OGF criterion is shown in the first column, the respec-
tive identified RS parameters in the last. Details and refer-
ences for the OGF criteria are given in the middle.

The second part reviews the RS data types which can be 
used to map the above-mentioned forest parameters. The 
type of input remote sensing data is of high relevance, since 
it determines not only the achievable forest parameters and 
extent of study area, but also relates to costs and accuracies.

The result of the conducted literature analysis (202 
records) is a matrix (Table 2) with the columns represent-
ing different input remote sensing data types and the rows 
representing the target forest parameters. The aim of this 
matrix is to provide an overview of the data types that have 
been used to map the target forest parameters. Thus, also 
not OGF-related studies are included as long as they aim to 
generate the same forest parameters. Although this matrix 
will never be complete, we are confident that the main studies 
are captured and that knowledge gaps are correctly depicted. 
This matrix is also meant to serve as a quick reference work 
to allow scientists to easily find the relevant study they may 

be interested in. Gray color marks those cells in the matrix, 
where a derivation of the respective forest parameter from 
this data type is not (yet) possible due to physical restrictions, 
e.g., deriving individual tree crowns from optical HR data. 
All papers, which specifically aim at mapping forest param-
eters to distinguish OGF from NOGF, are printed bold. If 
authors combined different data sets to generate a single for-
est parameter, they are mentioned in the same row repeatedly 
in different columns, as for example [65]. Similarly, if authors 
used the same data set to derive multiple forest parameters, 
they are mentioned in the same column repeatedly.

Depending on the data used and forest parameter to be 
mapped, assessment on two different levels can be conducted 
(mentioned in brackets in Table 2): individual tree detec-
tion (ITD) or area-based assessments (ABA). The area to 
be looked at can be a forest stand, a moving window, or a 
raster. ITD assessment relies on detailed input data such as 
ALS [66] or optical VHR data [67]. ABA and ITD can also 
be combined, as shown in Fig. 3. Many forest parameters 
are generated per stand (e.g., canopy cover), while single 
tree detection based on ALS data is also included as stem 
numbers per ha. A comprehensive review of methods for 
individual tree assessments with a focus on LiDAR data, 
but also including studies based on optical and SAR data, 
was published in 2016 [68]. Similarly, an international 

Table 2   Matrix of RS 
parameters and RS datasources

OGF specific papers indicated in bold
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comparison of tree detection approaches based on optical 
and LiDAR data was performed in the early 2010ers [69].

There are also several research activities using point-wise 
data, i.e., terrestrial laser scanning (TLS) or, more recently, 
space-borne laser scanning (SLS) to map forest parameters, 
with some of them specifically related to OGF [70–74]. 
However, for brevity reasons, we will not go into further 
detail on TLS and SLS in this paper. For more informa-
tion on forest parameter retrieving with TLS, the reader is 
referred to a related review article [75].

For the identification of individual trees (tree position, 
tree height, and/or tree crown), two broad categories of 
methods can be distinguished: raster-based methods and 
point cloud–based methods. Raster-based methods use one 
or more images with an arbitrary number of bands as input. 
The information the pixel values represent can either be 
optical [101, 103, 104] or SAR backscatter information 
[76, 101], or they represent height (e.g., mean, maximum, 
dominant height at pixel area) or pulse intensities derived 
from 3D point clouds that are projected into 2D [69, 81, 
270, 271]. Assessment approaches based on point clouds, 
e.g., 3D data, derived from LiDAR, photogrammetric/
radargrammetric processing, or from interferometric SAR 
[109], are targeting at the 3-dimensional shape of certain 
features, e.g., cone- or dome-shaped features represent-
ing tree crowns or cylinders assumed to represent tree 
stems[81, 99]. The majority of all studies using height 
information (either raster based or point cloud based) to 
delineate tree crowns or tree objects used clustering [82, 
85, 87, 91, 111, 272] or region growing algorithms [69, 76, 
80, 81, 84, 87, 89, 95, 103, 104]. More recently, deep learn-
ing has also been used for this purpose [99, 102]. For area-
based height assessments (stand height and height distribu-
tion), regression-based methods are predominantly used 
[116, 122, 123, 125, 128–131, 138, 211], but also RF [122, 
124, 138, 140], SVM [138, 140], or ANN [240] is applied.

Methods to assess canopy cover are manifold and range 
from thresholding of height metrics [117, 168] and regres-
sion algorithms [116, 167, 178, 181] to regression and 
decision trees and various other well-established machine 
learning algorithms such as Gradient Boost, SVM, or ANN 
[169, 171, 173, 179, 180, 182, 240]. It has been successfully 
demonstrated that object-based approaches applying a com-
prehensive, empirically defined set of rules based on spectral 
and/textural image characteristics are particularly suitable 
when optical VHR imagery is available [170, 172, 176]. 
Canopy gaps are mostly detected by applying empirically 
defined thresholds for height metrics or spectral values [170, 
185, 187, 191, 192, 196, 200, 201], but also RF and SVM as 
well as spectral mixture analysis have been used [198, 204]. 
Instead of providing absolute information, e.g., gap or no 
gap, some studies provide canopy cover percentages or gap 
probabilities for a certain analysis unit which can be a single 

image pixel or an analysis grid of certain extent [184, 186, 
199]. In some way related to canopy cover is the assessment 
of the history of forest cover using RS data. Several papers 
returned from the SCOPUS search dealt with this assessment 
in Asia [181, 273, 274].

To classify tree species based on RS data (either ITD or 
ABA), RF and SVM algorithms are the classifier of choice 
in many studies [49, 211, 249, 252, 256, 263–265, 268, 
269, 275–277]. In addition, the linear discriminant analysis 
method [87, 246], regression [149], and, more recently, also 
deep learning algorithms have been employed to map tree 
species [90, 260].

Various studies dealing with the differentiation between 
dead and living trees use regression-based methods [85, 
149, 150, 152, 153, 159, 159, 161], but also SVM [106], RF 
[158], or deep learning [156] has been used for this purpose. 
In addition, for the detection of lying deadwood also tem-
plate matching algorithms were employed [164].

For the determination of the vertical structure of a for-
est, e.g., number of tree layers, mostly height information 
acquired by ALS is used because laser pulses can penetrate 
the canopy. Depending on the wavelengths, this is also true 
for some SAR sensors. The used methods range from straight-
forward thresholding operations [115, 228, 231], regression 
models [227], clustering algorithms [82] to newer ensemble 
learning and instance-based algorithms such as RF or SVM 
[230], and deep learning [229]. More recently, attempts have 
been made to investigate the use of optical data and the com-
bination of optical and SAR data in a classification approach 
building on neural networks to derive forest vertical structure 
[226, 237, 238]. Figure 3 shows an example of several forest 
parameters being mapped for the same area; the input data 
sets are ALS and Sentinel-2 optical HR images.

3.2 � Indirect Approach

Instead of mapping the physical existence of OGF, the indi-
rect approach aims at identifying areas of possible exist-
ence of OGF. This information can be a valuable element in 
OGF mapping. All indirect approaches are based on other 
existing (geospatial) data sets, sometimes combined with 
other data sets, such as questionnaires and literature review 
[4]. This study compiled a database of primary forests of 
Europe (including OGF) by using a boosted regression tree 
algorithm to model the current distribution of primary for-
ests using different biophysical, socio-economic, and forest-
related predictor variables. Based on the calculated model, a 
comprehensive 1 km × 1 km resolution map representing the 
likelihood of the occurrence of primary forest in Europe was 
produced. Figure 4 (left) shows the final map of the likeli-
hood of the occurrence of primary forests in the Carpathians.

On global scale, the authors of [278] mapped forest man-
agement by downscaling of existing data from national and 
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subnational forest management of 2000 collected in the 
Forest Resource Assessment of the Food and Agricultural 
Organization of the United Nations and enhanced by subna-
tional statistics for some countries. The classification was 
performed on two levels, each having three categories. Level 
1 (forest classes) includes primary, naturally regrown and 
planted forest, while Level 2 distinguishes between forest 
uses. The authors calculated a multinomial logit fit model 
using a set of 21 predictor variables representing the cat-
egories accessibility, governance, soil, climate and terrain 
conditions, and forest properties to generate global likeli-
hood maps of 1 km × 1 km spatial resolution. The predictor 
variables are based on the PREDICTS database (Projecting 
Responses of Ecological Diversity in Changing Terrestrial 
Ecosystems [279]).

The Romanian Carpathians were in the focus of an 
approach to map high conservation value forest (HCVF), 
which includes OGF [280]. The work of this study is based 
on three different data sources: forest loss data from Roma-
nia from 1955 to 1965 derived from historical Corona spy 
satellite data [281], digitized historical military topographic 
maps between 1968 and 1978, and maps of forest distur-
bance regimes across Europe from 1986 until 2016 derived 
from Landsat satellite image data [282]. The third data set 
was further used to assess the canopy’s structural complexity 
based on different spectral-temporal metrics from Landsat 
and ALOS-2 PALSAR-2 imagery. Additionally, they evalu-
ated anthropogenic pressure by calculating a human pressure 
index based on additional data on transportation network, 

population density, and local reliance on firewood. Combin-
ing the structural complexity and anthropogenic pressure, 
they generated a comprehensive forest map of the Romanian 
Carpathians with four classes (primary HCVF, HCVF at 
risk, managed forest, and restoration forest). Figure 3 (right) 
shows the result of their modeling.

As a summary, Table 3 lists all predictor variables used 
in the three reviewed studies. There are 5 predictor variables 
that were used in all of them (highlighted in bold in the 
table): tree cover or forest maps, topographic information 
on elevation and slope, population density, and travel time 
to the nearest city.

3.3 � Direct Approach

In accordance with the geographic origin of the term “old-
growth forest” laid out in the introduction, the first studies 
employing direct assessment approaches of OGF by means 
of remote sensing data focus on temperate coniferous forests 
of the western US [234, 284, 285]. Although not directly in 
the focus of our review due to a different geographic area, we 
briefly review some main US studies below. To differentiate 
between young forests, mature forests, and OGF within a 
coniferous forest stand, the authors of [234] employed Land-
sat 5 and regression analysis and obtained 75% accuracy for 
the OGF class. By making use of Landsat 7 Enhanced The-
matic Mapper imagery and an unsupervised classification 
approach, the authors of [285] successfully classified old 
and mature coniferous forest in eight different ecoregions in 

Fig. 3   Generation of several forest parameters from ALS and Sentinel-2 satellite data, wall-to-wall mapping, one segment shown as example
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the Pacific Northwest, USA. The achieved overall classifica-
tion accuracies vary between 89 and 94% for the different 
ecoregion.

Also set in the USA, the authors of [286] used ALS 
data to map forest successional stages across a structur-
ally diverse, mixed-species forest in Northern Idaho. They 

Fig. 4   The result of two mapping exercises using indirect approaches 
to map likelihood of primary forest in the Carpathians. Left: Map of 
highest likelihood of primary forest occurrence in Europe based on 
[4] with data from [283]. Right: Presence of High Conservation Value 

Forests in Romania from [280]. Green indicates prime HCVF, light 
blue indicates managed forests, and purple indicates forests with res-
toration potential towards HCVF

Table 3   Publications reviewed for the indirect approach and used predictor variables. Predictor variables used in all three studies are marked in bold

Publications [278] [280] [4]
Study area Global Romanian Carpathians Europe
Predictor variables - Net primary production

- Percentage tree cover
- Forest gain between 2000 and 2014
- Forest loss between 2000 and 2014
- Elevation; - slope
- Sand content in soil; - clay content in soil
- Soil depth; - depth of topsoil; - carbon content 

in subsoil, in top 50 cm soil layer and in 
topsoil; - soil drainage

- Aridity Index
- Market access
- Travel time to major cities
- Distance to roads; - distance to rivers
- Population density
- Aggregated governance index

- Historical forest data (historical forest map 
1955–1965 [281], military topographic 
maps 1968–1978, forest disturbance 1986 
until 2016 [282])

- Tasseled cap wetness,
- brightness, - greenness (based on Landsat); 

- start of season; - peak of season; - end of 
season

- Annual mosaics of L-band backscatter in HH/
HV orientation (2)

- Elevation; - slope
- Population density 2015
- Distance to the nearest road
- Travel time to major cities
- Density of houses using firewood for heat

- Growing degree day
- Mean annual tempera-

ture
- Water availability)
- Soil (Crop suitability)
- Elevation; - slope; 

- aspect
- Ruggedness; - solar 

radiation
- Forest cover; - forest 

core area
- Growing stock net 

annual increment
- Biogeographical 

region
- Population density
- Travel time to the 

nearest city
- Harvesting intensity 

2000–2015 averaged
- Forest cover 1850;
- Wood demand 1828

Algorithm Multinomial logit regression Maximum entropy Boosted regression trees
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calculated different ALS metrics describing the forest 
height and canopy cover. The RF algorithm was used to 
model six different classes of successional stages with an 
overall accuracy of about 95%. In their study which was 
also based on ALS data, the authors of [287] tested whether 
young secondary forests have distinct canopy structural 
characteristics compared to primary forest and if forests 
located in higher altitude have a lower complex structure 
than forests in lower altitudes. Their results were not sig-
nificantly indicating that structural complexity is linearly 
related to forest age or elevation range. Instead, they found 
that structure varies within and among forest age groups, 
leading to the conclusion that forest development is not 
sequential but can follow multiple pathways.

Coming back to Europe, a more recent study [288] pro-
duced a map of potential primary forest in the Romanian 
Carpathians. The authors employed optical Sentinel-2 data 
and developed an object-based classification approach. For-
est segments are generated using the Sentinel-2 data and 
refined by manual revision. Based on existing field measure-
ments, they developed a classification approach based on 
empirical thresholds for the leaf area index (LAI) and the 

LAI (leaf water content) to distinguish young forest stands 
from primary and OGF. Based on the results produced by 
[288] and further existing and verified OGF inventories in 
combination with additional information gathered during 
field surveys and other mapping projects, OGF in Romania 
was mapped by visual assessment of historic and current 
VHR data [48]. They used historical CORONA satellite 
images as well as aerial and VHR satellite image time series 
provided by Google Earth and other optical data providers 
to identify potential further OGF areas not yet included in 
existing inventories. The results of this mapping exercise are 
depicted in Fig. 5.

By employing a machine learning algorithm, the authors 
of [49] mapped OGF directly developing an object-based 
approach using mean and standard deviation values of opti-
cal Sentinel-2 10 and 20 m bands as well as six vegeta-
tion indices and Grey Level Co-occurrence Matrix textural 
features. Existing OGF reference plots provided by WWF 
Ukraine and additionally acquired NOGF plots served as 
segments for the object-based classification. By using a ran-
dom forest classifier, the authors identified OGF with an 
overall accuracy of about 85%.

Fig. 5   Map of primary forests in Romania from [48]
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Table 4 provides a summary of the data, metrics, and 
algorithms used in reviewed publications. In studies using 
optical satellite imagery, either from Landsat or Sentinel-2 
sensors, spectral band and the Normalized Difference Veg-
etation Index (NDVI) are used. Landsat based studies also 
employed the Tasseled Cap (TC) Brightness (TCB), Green-
ness (TCG), and Wetness (TCW).

3.4 � Results of Classification Methods Review

This part of the review is to assess which classification meth-
ods have been used previously and how this has developed 
over the past 25 years. Table 5 shows the number of publica-
tions in Elsevier’s SCOPUS database over time. Visualized 

in Fig. 6, it can clearly be seen that the use of random for-
est or (other) ensemble learning approaches has increased 
significantly in the past 10 years. Artificial neural networks 
and deep learning have become widely used only in the last 
five years.

4 � Discussion

With the new EU Biodiversity strategy to 2030 calling to 
protect remaining primary and old-growth forests in Europe, 
the scientific community has also increased efforts on iden-
tifying and monitoring of primary and OGFs. One remain-
ing challenge lies in the absence of a common definition 

Table 4   Publications reviewed for the direct approach including metrics used

* Only those metrics are listed which turned out to be important for the analysis

Publication Study Area Data Metrics Algorithm

[234] Pacific Northwest USA Landsat 5 Tasseled cap wetness (TCW), brightness 
(TWB), greenness (TCG)

Regression analysis

[284] Pacific Northwest USA Landsat 5
SRTM DEM

Spectral bands,
NDVI,
Ratio TM 4/3I,
Ratio TM 4/5,
Ratio TM 4/7,
Relative sun incidence,
TCW, TWB, TCG​

ISODATA​

[285] Pacific Northwest USA Landsat 7 Spectral bands ISODATA​
[286]* Inland Northwest USA ALS Maximum Height

Range of Heights
Mean Height
Median Height
Modal Height
Heights 25th Percentile
Canopy Cover (Vegetation Returns/Total 

Returns⁎100)
Percentage of Vegetation ReturnsN1 m and 

b = 2.5 m
Percentage of Vegetation ReturnsN10 m 

and b = 20 m
Percentage of Vegetation ReturnsN20 m 

and b = 30 m

Random forest

[287] Pacific Northwest USA ALS 95th percentile height
Rumple index
Canopy density

Hierarchical clustering

[193] Pacific Northwest USA ALS 95th percentile height
Rumple index
Canopy density

Random forest

[48] Romanian Carpathians Google Earth, RGB VHR images, existing OGF data Visual analysis
[49] Ukraine Carpathians Sentinel-2

SRTM DEM
Spectral bands (mean + standard deviation);
Mean of NDVI, EVI, AVI, SI, NDII, 

RENDVI, GLCM contrast, entropy and 
mean for B3, B8 and B12, elevation, 
slope

Random forest

[288] Romanian Carpathians Sentinel-2 Spectral bands, NDVI, LAI, LAI CW (leaf 
water content), NDVI slope

Multi-level analysis: image segmentation, 
nearest neighbor classification, threshold-
based classification, visual analysis
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and related criteria and thresholds, which are now being 
worked on at a European level. Nonetheless, there are cer-
tain criteria indicating OGF which can be related to forest 
parameters that, in turn, can be derived by means of remote 
sensing. Since remote sensing technology has proven to be 
of valuable support for forestry applications, such as forest 
inventories, it offers a unique opportunity to support map-
ping and monitoring of OGFs.

This study provides a review on existing literature with 
a set of certain limitations. These limitations may present 
a notable bias in the subject matter covered and therefore 
need to be addressed to provide the readership with the 
clear picture to put the results of this review in perspec-
tive. First, since the systematic search did not return the 
expected number of studies, pre-existing knowledge of the 
authors has been included. Therefore, also the results are to a 
large extent based on pre-existing knowledge of the authors. 
Second, due to the focus on European temperate OGF, the 
review is based mainly on European literature, with a low 
coverage of articles dealing with tOGFs elsewhere. Third, 

articles dealing with “old-growth” forests but qualified with 
other terms (e.g., “primeval,” “primary,” “overmature”) have 
not been considered. Fourth, journals of forest ecology and 
management were not considered if the articles were not 
previously known by the authors, as the search was limited 
to journals with “remote sensing” in the title.

Three approaches has been identified in this review: 
the parameter-based, the indirect, and the direct approach. 
From the review, we see that the direct approach has been 
developed and mostly been used in North America and only 
recently was applied in the Carpathians in Europe [48, 49, 
287]. One reason might be the availability of higher reso-
lution data, which is more important for small-structured 
forest patches in Europe as compared to larger and more 
homogeneous areas in the USA and Canada. Another reason 
for the higher popularity of the parameter-based approach in 
Europe might also be the availability of data and informa-
tion for other purposes (forest monitoring, management, 
habitat mapping), that could easily be re-used for OGF 
mapping.

Table 5   Number of publications in Elsevier’s SCOPUS database

Algorithm or algorithm group 1997–2001 2002–2006 2007–2011 2012–2016 2017–2021

Thresholding OR local maximum OR local minimum 5 16 42 54 65
Regions growing OR watershed 0 5 8 27 31
Spectral mixture analysis 5 11 16 21 21
Template matching 0 0 0 2 1
Multiple linear regression OR linear regression OR non-

linear regression
4 12 34 29 45

Bayesian 3 2 2 10 26
Support Vector Machine (SVM) 0 1 10 45 83
Clustering algorithm 0 0 1 2 4
Dimensionality reduction 0 0 0 5 4
Random forest (RF) OR ensemble learning 0 0 17 114 348
Artificial neural (ANN) network OR deep learning (DL) 1 4 8 13 85

Fig. 6   Number of publications per period using the identified methods/method groups
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There is a big potential to apply direct approaches more 
widely in Europe, as examples from the Carpathians already 
show. Certainly, adaptations might be needed, especially, if the 
approaches should be applied to other ecoregions like the Medi-
terranean or the boreal forest zones of Europe. This is however 
even more true for the transfer of parameter-based approaches.

Finally, indirect approaches are not easily transferable 
from one region to another, as existing frame conditions, 
available data, and OGF definitions strongly differ. Especially 
the distance to roads or settlements is not as important in 
Europe as it might be on other areas, e.g., if an OGF is under 
protection. There are several tOGF assigned as UNESCO 
Natural World Heritage, which are very close to or even 
surrounded by settlements and streets. Thus, the indirect 
approach has clear limitations for applicability in Europe and 
should rather be used in combination with other approaches 
or with regionally adapted thresholds (see scenario 1).

A broad spectrum of methods and approaches have 
already been developed to identify and map OGF, often on 
specific case studies. This makes it impossible to compare 
achieved accuracies due to different procedures of accu-
racy assessment, including sampling design and accuracy 
measures calculated, reference data, and site conditions. In 
order to allow for a thorough comparison of methods and 
achievable results, we urge for a systematic international 
comparison of methods for OGF classification on a homog-
enized data set and a common evaluation approach (similar 
to the comparison of tree detection algorithms from [69]). 
A further complication resides in the multi-parameter nature 
of OGF classification. While one forest parameter might be 
very accurately mapped, this does not necessarily result in 
accurate OGF mapping. It may well be that moderate accu-
racies for several forest parameters may be more important 
for correct OGF classification due to the trade-off and com-
plementarity between parameters. Keeping this and also the 
costs of different data sets in mind, there is not one solution 
for all. As a result, it is impossible to draw any general con-
clusions which of the three approaches (parameter-based, 
indirect or direct) is to be preferred.

Based on this literature study, therefore, we propose two 
scale-dependent optimal scenarios to be tested in practice.

(a)	 Scenario 1: Regional to continental-wide evaluation of tOGF
	   The aim of this scenario is to identify so far unknown 

tOGF stands on a broader geographical scale, e.g., 
regional, country-wide, or continental-wide. Gener-
ally, the larger the assessment area, the more important 
it is to use highly automated assessment approaches 
based on freely available RS data and existing refer-
ence data. Therefore, direct approaches using free and 
open RS data, like the Copernicus optical and SAR data 
sets, in combination with other meaningful geospatial 

data sets in an automatic machine learning procedure 
seem to be the most suitable and efficient approach, 
which has been shown in examples mainly from North 
America. The main obstacle of a scenario using the 
direct approach is the availability of sufficient, reliable, 
representative, and consistent reference data covering 
all types of OGF occurring in the area of investiga-
tion. In ideal circumstances, enough reference data is 
available to perform training of the selected algorithm 
and validation of results with an independent data 
set. However, since the number of conducted studies 
using direct approaches based on up-to-date machine 
learning methods is rather small (see Sect. 3.3), future 
research is crucial to exploit the full mapping potential. 
The second option for such an assessment would be 
an indirect approach using a wide variety of existing 
geospatial data to “predict” the presence of potential 
tOGFs with mathematical models, as done for exam-
ple in [280] or in [4] with the related aim to detect 
“potential” primary and tOGF in Europe. Ideally, both 
the direct and the indirect approach should be jointly 
applied in a combinatory method. The fact that there is 
not one single, binary denominator of tOGF might also 
be a major challenge in applying one approach on con-
tinental scale. Therefore, it will probably be necessary 
to geographically split the mapping area in contained 
strata in order to account for different dominant criteria 
and threshold values, often related to growth conditions 
and forest composition.

(b)	 Scenario 2: Detailed mapping for quantifiable monitor-
ing and/or decision support

	   The general assumption for this scenario is that 
detailed ground-truth data is already available, quanti-
fying specific old-growth indicators for (potential) tOGF 
stands and their surroundings. In this case, a parameter-
based approach using ALS data in combination with 
additional satellite or airborne data would be most 
suitable. The applications for this more local scenario 
can be twofold. A first application is the more detailed 
delineation of the borders of known tOGF areas and the 
characteristics of their surroundings. This mapping can 
provide valuable information and recommendations for 
policy makers for the definition of new or expanding 
of existing protection zones or it may serve as a basis 
for setting up an in situ field assessment network. The 
second application is the monitoring of known tOGFs 
over time in order to assess their conservation and qual-
ity. A parameter-based approach can objectively assess 
the different RS forest parameters listed in Table 1 to 
support the assessment of the respective tOGF criteria. 
However, since ALS data and/or very high-resolution 
optical data is needed to provide detailed information on 
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local scale, developing and maintaining such a monitor-
ing system are always associated with additional costs 
for acquisition of RS data.

5 � Summary and Knowledge Gaps

In conclusion, the number of publications dealing with 
tOGF mapping as main focus found in this study is rather 
limited. However, there is a lot of knowledge from other 
forestry-related applications that map forest parameters 
using RS currently underexploited for its use to assess 
OGF. This is a chance to leverage the full potential of 
remote sensing technology independent of the primary 
application focus. In terms of methods, we identified three 
groups: parameter-based approaches, direct approaches, 
and indirect approaches. The first type of approach is 
mostly suitable for local assessments with a clear focus 
on ALS data, due to its ability to penetrate the canopy and 
deliver information on the vertical and horizontal structure 
of the forest. A second reason is the high resolution, which 
allows to detect individual trees and gather their specific 
properties such as size and position. In combination with 
optical data to derive tree species information, this data 
currently returns highest accuracy values and largest level 
of detail. However, using ALS data and optical VHR data 
is usually rather cost-intensive. Therefore, its use for 
large-area assessment, e.g., country and continental-wide, 
is usually not feasible. For such large-area assessments, 
both the direct and indirect approaches have been used, 
typically employing HR optical and SAR data as well as 
other geospatial data sets. The applied algorithms to map 
different forest parameters or OGF directly range from 
regression algorithms to region growing, ensemble learn-
ing (especially RF), SVM, and newer ANN and deep learn-
ing architectures with a clear recent focus on RF, SVM, 
and ANN including deep learning algorithms.

We could identify five main knowledge and research gaps. 
The first issue is the absence of commonly accepted defini-
tions, indicators, and threshold values to define and assess 
OGF, even when restricted to temperate forests (tOGF). 
Both, an acknowledged definition for OGF itself and also for 
indicators of “old-growth-ness,” are lacking. A second chal-
lenge relates to one specifically important OGF criterion, 
dead wood amounts. Data on dead wood are often lacking 
from traditional forest inventories and RS assessments of 
forest stands in Europe. In the parameter-based approach, 
the most important need is to develop more accurate and 
more efficient dead wood assessment methods. Third, for 
the direct approach, large comparative studies on accuracy 
assessments are needed. Fourth, a combination of direct and 
indirect approaches should be tested, as it could provide 
important data combinations that can improve the accuracy 

of assessments, as it may reduce the errors of the individual 
methods. And fifth and finally, the absence of reference 
values for primary temperate forests in Europe are lacking. 
Such reference values are essential to assess the level of 
old-growth-ness of a forest. This is not only problematic for 
dendrometric parameters, but also for species composition, 
where we are to rely on hypothetical extrapolation of natural 
forest types and their species composition.

Nevertheless, the increasing spatial and temporal resolu-
tion of area-wide RS data, especially from satellite data across 
large areas, provides a large potential for forest classifications 
and assessments, that no longer should rely on statistical data 
from ground-based sample grids (like NFIs). The further 
development of RS methodology in forest classification and 
its application will be beneficial not only for the mapping of 
OGF, but also as inputs for national restoration plans and to 
monitor the spatial trends in the degradation or restoration 
status [289] of forest ecosystems in Europe and elsewhere.
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